metabelian, supersoluble, monomial
Aliases: C33⋊5Q8, C32⋊6Dic6, C6.24S32, (C3×C6).37D6, C3⋊Dic3.4S3, C3⋊2(C32⋊2Q8), C2.3(C32⋊4D6), (C32×C6).15C22, (C3×C3⋊Dic3).3C2, SmallGroup(216,133)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊5Q8
G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, dad-1=eae-1=a-1, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 252 in 70 conjugacy classes, 23 normal (5 characteristic)
C1, C2, C3, C3, C4, C6, C6, Q8, C32, C32, Dic3, C12, C3×C6, C3×C6, Dic6, C33, C3×Dic3, C3⋊Dic3, C32×C6, C32⋊2Q8, C3×C3⋊Dic3, C33⋊5Q8
Quotients: C1, C2, C22, S3, Q8, D6, Dic6, S32, C32⋊2Q8, C32⋊4D6, C33⋊5Q8
Character table of C33⋊5Q8
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 2 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | -2 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ13 | 2 | -2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ14 | 2 | -2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | √3 | 0 | 0 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ15 | 2 | -2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | 0 | -√3 | √3 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ16 | 2 | -2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | 0 | √3 | -√3 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ17 | 2 | -2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | -√3 | 0 | 0 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 4 | 4 | -2 | -2 | 4 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | -2 | 4 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ19 | 4 | 4 | 4 | -2 | -2 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | -2 | -2 | 4 | 1 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ20 | 4 | 4 | -2 | 4 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | -4 | -2 | 4 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
ρ22 | 4 | -4 | 4 | -2 | -2 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 2 | 2 | -4 | -1 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
ρ23 | 4 | -4 | -2 | -2 | 4 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 2 | -4 | 2 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2Q8, Schur index 2 |
ρ24 | 4 | -4 | -2 | -2 | -2 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1-3√-3/2 | 1+3√-3/2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | 4 | -2 | -2 | -2 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | 0 | 0 | 0 | -2 | -2 | -2 | -1+3√-3/2 | -1-3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ26 | 4 | 4 | -2 | -2 | -2 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | 0 | 0 | 0 | -2 | -2 | -2 | -1-3√-3/2 | -1+3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ27 | 4 | -4 | -2 | -2 | -2 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1+3√-3/2 | 1-3√-3/2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 19 14)(2 15 20)(3 17 16)(4 13 18)(5 10 21)(6 22 11)(7 12 23)(8 24 9)
(1 19 14)(2 15 20)(3 17 16)(4 13 18)(5 21 10)(6 11 22)(7 23 12)(8 9 24)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)
G:=sub<Sym(24)| (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,10,21)(6,22,11)(7,12,23)(8,24,9), (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,21,10)(6,11,22)(7,23,12)(8,9,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13)>;
G:=Group( (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,10,21)(6,22,11)(7,12,23)(8,24,9), (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,21,10)(6,11,22)(7,23,12)(8,9,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13) );
G=PermutationGroup([[(1,19,14),(2,15,20),(3,17,16),(4,13,18),(5,10,21),(6,22,11),(7,12,23),(8,24,9)], [(1,19,14),(2,15,20),(3,17,16),(4,13,18),(5,21,10),(6,11,22),(7,23,12),(8,9,24)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)]])
G:=TransitiveGroup(24,551);
C33⋊5Q8 is a maximal subgroup of
C33⋊7SD16 C33⋊Q16 C33⋊8SD16 C33⋊3Q16 S3×C32⋊2Q8 C33⋊6(C2×Q8) (S3×C6).D6 D6⋊S3⋊S3 C3⋊S3⋊4Dic6 C12.95S32 C62.96D6
C33⋊5Q8 is a maximal quotient of
C62.85D6
Matrix representation of C33⋊5Q8 ►in GL4(𝔽7) generated by
5 | 3 | 2 | 3 |
1 | 3 | 3 | 0 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 5 | 2 | 6 |
0 | 2 | 0 | 2 |
3 | 3 | 6 | 1 |
0 | 0 | 0 | 4 |
4 | 0 | 6 | 6 |
4 | 5 | 6 | 5 |
5 | 2 | 1 | 6 |
5 | 5 | 2 | 4 |
3 | 6 | 1 | 3 |
5 | 1 | 3 | 3 |
3 | 3 | 3 | 1 |
2 | 5 | 6 | 0 |
G:=sub<GL(4,GF(7))| [5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[0,0,3,0,5,2,3,0,2,0,6,0,6,2,1,4],[4,4,5,5,0,5,2,5,6,6,1,2,6,5,6,4],[3,5,3,2,6,1,3,5,1,3,3,6,3,3,1,0] >;
C33⋊5Q8 in GAP, Magma, Sage, TeX
C_3^3\rtimes_5Q_8
% in TeX
G:=Group("C3^3:5Q8");
// GroupNames label
G:=SmallGroup(216,133);
// by ID
G=gap.SmallGroup(216,133);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,31,387,201,730,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export